

Site occupancy of native plants in New Zealand

Chris Phillips Jagath Ekanayake, Michael Marden

in this talk

- Setting the scene
- Our approach
 - root site occupancy
- How we do it
- Some results
- Wrap up

Context – 1

Why the focus on natives?

- Loss of riparian vegetation
- Loss of ecosystem services
- Degraded water quality & habitat

Figure 4: Riverbank Restoration Plantings - Cross Section

Toetce & Ti kouka

- Public desire to redress
- Community action
- Natives over exotics
- What to use, how many & where

outon Transka Shruby

Protective to flering the

Context – 2

Effectiveness of wide-spaced trees

Context – 2

Effectiveness of wide-spaced trees

How many? How far apart? Where to plant? When effective? How to gauge effectiveness?

The Big Question?

Can our New Zealand native plants perform a river bank stabilising function as well as introduced plants?

In geotechnical terms, how do we quantify the benefits of vegetation to soil stabilisation?

Native plant database

austro

nx arbor

ramu Coprosma robusta

Mean max. root spread 5 year old natives

growth – above and below, canopy occupancy, root architecture, root biomass, root occupancy, root depth, root strength, root X-sectional area/shear area

Root site occupancy

100% root site occupancy

Root site occupancy

100% root site occupancy

McIvor et al (2007)

Marden & Phillips (unpub.)

Root reinforcement index (RFI) = Root surface area

Root spread area

Note: For an ideal tree which has (100% root surface area / spread area, RFI = 1), ESR = R

(ESR)(cm) = Moment of RFI distribution of measured root spread on Y axis Moment of RFI distribution for 100% root spread on Y axis

R

Fig-5 Estimating ESR – 5 Year Cabbage tree

[150 * 75]

Model parameters

Parameters for Effective Root Spread Radius

*	a	b	С	r2
5-Finger	175.89	-328.5	416.75	94
Cabbage tree	311.82	-567.9	698.45	96
Karamu	347.6	-661.2	857.97	94
Kohuhu	384.5	-739.4	972.26	90
Kowhai	195.7	-370.5	477.9	98
Lacebark	318.04	-608.6	796.7	93
Lemonwood	286.1	-536.3	683.5	97
Mapou	56.52	-105.8	137.3	97
Rewarewa	145.7	-277.58	360.6	84
Ribbonwood	453.2	-855.8	1100.4	98
Tutu	452.8	-826.7	1013.59	99

Site occupancy (%) for planting density 1m x 1m

Site occupancy (%) for planting density 2m x 2m

Next steps

- Aim to develop a simple tool
- Choose a mix of species
- Optimisation for site reinforcement
- Scenario testing
- Carbon modelling
- Other parameters such as canopy spread – shade etc

- Not all native plants perform the same
- Root surface area reflects root-soil interaction
- Root site occupancy good measure
- Effective root spread better estimator than mean max root spread

- Develop models for use in planting plans
- Use natives for different functions?

Thanks for listening

谢谢

"The unhealthiness in our world today is in direct proportion to our inability to see it as a whole."

Peter Senge