

A Decision Support Tool for Assessing the Effects of Land Cover Change on Water Resources

Joseph Thomas
Tasman District Council

Tim Davie

Landcare Research

MFE (SMF – Sustainable Management Fund) project

- Work carried out by Landcare Research
 Barry Fahey, Lindsay Rowe, Rick Jackson, Andrew Fenemor &
 Tim Davie
- Extra funding and input from
 - Tasman District Council (project management)
 - City Forests Ltd (Dunedin)
 - Environment Canterbury
 - Hawkes Bay Regional Council
 - Marlborough District Council
 - Environment Southland
 - Horizons MW

AIMS

- to compile background information on water use by different vegetation covers in New Zealand
- to develop a decision support procedure that will assist users and managers of land and water to predict the hydrological effects of land cover changes

Objectives

- 1. Literature reviews
 - Water use by pine, Douglas fir, other (pasture, scrub, tussock)
- 2. Data compilation
 - Data on land use experimental catchments
- 3. Data analysis
 - Analyse data from 2 for annual, storm, base and seasonal flows
- 4. Synthesis
- 5. Decision Support Tool

Decision Support Tool

- Modification of an existing water balance model to predict the hydrological consequences likely to accompany a predicted land cover change
- Provides an interactive graphical user interface to make the model accessible within a decision support tool
- Users' guide for the model and DST

Variables required for water balance model

- Daily rainfall (from local station)
- Monthly "reference evapotranspiration" (based on published summaries and converted to daily values)

Parameters required for water balance model

- Fraction of rainfall lost through interception
- Crop coefficient to convert "reference evaporation" to transpiration for the cover type
- Soil water storage capacities
- Base flow parameters

"Reference evapotranspiration"

- Potential evaporation for an extensive surface of well-watered, short grass
- Main source of information:

Summaries of water balance data for NZ stations. NZ Meteorological Service Miscel Publication 189 (1986)

- Monthly values converted to days
- If more detail known it can be used

Interception fraction

- Values from individual studies can be found in Report 5
- Default values used in model are:

Pasture	0.0
Tussock grassland	0.2
Scrub	0.2
Young forest	0.1
Old forest	0.3

Crop transpiration coefficient

- Reduces the reference evapotranspiration to a value representative of the given vegetation cover (still well-watered)
- Default values used in model are:

Pasture	1.0
Tussock grassland	0.4
Scrub	0.7
Young forest	0.8
Old forest	0.7

Soil parameters

- Profile total available water (TAW in mm)
- Profile readily available water (RAW in mm)

Soil surface storage (mm)

Baseflow parameters

- Baseflow index
 - Proportion of total flow as baseflow
 - Requires a streamflow record
- Baseflow recession coefficient
 - Determines the rate of baseflow recession
 - Requires a streamflow record
 - Taken from table supplied with model
- Can use nearby streamflow record if none available for specific site

Case studies

- Small experimental catchments
 - Glendhu, upper Waipori, upland east Otago
 - Pakuratahi, coastal hill country, Hawkes Bay
- Larger diverse catchment
 - Shag river, north-east Otago
- "Blind" run of model
 - Rocky Gully, Hunter Hills, South Canterbury

Glendhu experiment

- Operating since 1980
- Control catchment (214 ha) of snow tussock
- Flow compared with an adjacent catchment (310 ha) planted in 1982 (pines)

Glendhu tussock catchment

Annual flows (1980-2001)

Glendhu tussock catchment

7-day low flows (1980-2001)

Glendhu planted catchment

Annual flows(1980-2001)

Glendhu planted catchment

7-day low flows (1980-2001)

Glendhu summary

Tussock catchment (1980-2001)			
Mean flow		Mean annual 7-day low flow	
Observed	Predicted	Observed	Predicted
814 mm	818 mm	0.82 mm	0.95 mm

Pine catchment (1990-2001)			
Mean annual flow		Mean annual 7-day low flow	
Observed	Predicted	Observed Predicted	
584 mm	573 mm	0.69 mm	0.61 mm

Pakuratahi experiment

- Paired catchment study north of Napier
- Comparing sediment yields form a pasture and pine catchment
- Pakuratahi (345 ha) in pine forest
 - Preharvest period 1995-1997
- Tamingimingi (795 ha) in pasture
 - -1995-2001

Pakuratahi summary

Pasture catchment (1995-97)			
Mean annual flow		Mean annual 7-day low flow	
Observed	Predicted	Observed Predicted	
412 mm	431 mm	0.49 mm	0.21 mm

Pine catchment (1995-97)				
Mean annual flow		Mean annual 7-day low flow		
Observed	Predicted	Observed Predicted		
381 mm	341 mm	0.57 mm	0.22 mm	

Shag catchment

- North east Otago
- Large catchment 319 km²
- Variety of land-cover types tussock, pasture, pines
- Reliable rainfall and flow record
- Model uses sub-areas for different land-cover and/or rainfall, and/or interception etc.

Sub- area	Land- cover	Rainfall wghting	Interc. fraction	Crop k	TAW	RAW
1	Tuss.	2	0.2	0.3	50	25
2	Tuss.	1.5	0.1	0.7	100	50
3	Past.	1	0	1	100	50
4	Past.	1	0	1	100	50
5	Past.	1	0	1	100	50
6	Past.	1	0	1	200	100
7	Past.	1	0	1	200	100
8	Past.	0.8	0	1	200	100
9	Past.	0.8	0	1	200	100
10	Scrub	1	0.2	0.7	150	75

Shag summary (1990-2000)

Mean annual flow		Mean annual 7-day low flow	
Observed	Predicted	Observed	Predicted
179 mm	226 mm	166 l/s	137 l/s

"Blind" run of model

- Rocky Gully inland from Timaru, NE flank of the Hunter Hills
- 23 km²
- Greywacke & argillite lithology
- Kaikoura steepland soils (70%) and Hurunui steepland soils (30%)
- Vegetation (from Land Cover Database)
 - Tussock 50%
 - Pasture 47%
 - Scrub 3%

Variable & parameter input

- Daily rainfall record from station mid-way up catchment
- Weighted according to isohyets
- Reference evapotranspiration from nearest Met station (Waimate)
- Other parameters (interception, TAW, RAW etc.) derived from default values for the model (using soil information)

Baseflow parameters

- Base flow index estimated at 0.65
 - From Jowett & Duncan (1990) Flow variability in NZ rivers.

 NZ Journal of Marine & Freshwater Research 24.
- Recession coefficient estimated at 0.98 using data from nearby Pareora river

Rocky Gully summary (1989-2001)

Mean annual flow		Mean annual 7-day low flow	
Observed	Predicted	Observed	Predicted
314 l/s	320 l/s	80 l/s	78 l/s

Rocky Gully scenarios

- Scenario 1: 40% of catchment converted to pines (lower region)
 - Mean annual flow reduced by 6%
 - Mean annual 7-day low flow reduced by 3%
 - Upper catchment is producing the majority of streamflow
- Scenario 2: 50% of catchment converted to pasture (upper region)
 - Mean annual flow reduced by 7%
 - Mean annual 7-day low flow reduced by 7%

Summary

- Project will produce:
 - 6 reports summarising knowledge on land use change
 - Easy to use hydrological model
 - User guide for model
- This information (by CD or download) will be freely available from July 2003 from:
 - Ministry for the Environment (SMF website)
 - Landcare Research, link through http://icm.landcareresearch.co.nz

