

The Motueka River Plume Ecosystem

Paul Gillespie

Cawthron Institute Nelson New Zealand

Work to date describes:

- o Stratification (water column stability)
- o Nutrient structure
- o Nitrogen sources and sinks
- Phytoplankton and benthic microalgal biomass and production
- Seawater circulation patterns and plume physical behaviour

Sea surface salinity

Nutrients vs salinity

25

Salinity (psu)

30

35

20

20 + 0 + 15

Primary production

Phytoplankton-

Benthic diatoms -

Food for benthic filter feeders

- Planktonic microalgae: Primary food
 component during phytoplankton blooms;
 e.g. the winter/spring diatom bloom and
 summer dinoflagellate blooms.
- Benthic microalgae: Primary food component during non-bloom periods. Maintenance diet??

What do Tasman Bay scallops eat?

Comparison of scallops on the seabed with others held in cages above the seabed

% Benthic ■ vs planktonic ■ microalgae in scallop guts

2 m

Analyses before (a) and during (b) a phytoplankton bloom (*Prorocentrum balticum*)

Sediment effects

o Near bottom high turbidity layer

- Sediments delivered from the catchment during storm events.
- Sedimentation and resuspension processes
- Strong gradient (on a scale of centimeters) with water layers above
- The proportion of inorganic/organic particles effects the nutritional value

Sediment effects

Suspended Solids content of near-bottom waters Tasman Bay 24-25 Feb 1999

Long term data collection

Seawifs chlorophyll July 2003

Buoy-mounted data sensors

LT *in situ* data collection, satellite imagery, coastal models

 To develop an integrated system of tools that can be used to assess and possibly forecast marine productivity based on remotely-sensed information

Uses...

- o Validation of ecosystem components of coastal model
- Management decisions based on real-time environmental conditions
- o Monitoring (e.g. storm effects, aquaculture effects)
- o Predictions based on climate/weather forecasting

Nutrient discharge from the Motueka catchment

- Dissolved inorganic nitrogen (nitrate, nitrite and ammonia-N)
- o Total nitrogen
- o Dissolved reactive phosphorus
- o Total phosphorus
- o Dissolved reactive silicate
- o Also looking at faecal indicator bacteria
- Will make similar calculations for suspended solids

River flow vs concentration

- Woodmans Bend vs 0 Woodstock
- Summer vs winter 0
- Steady (low) vs Rising 0 vs receding flows

Rising