Do we know how much river gravel is lost through extraction?

What do cross-section surveys tell us about gravel movement?

Les Basher¹, Ian Fuller², Eric Verstappen³ ¹Landcare Research, Nelson; ²Geography Dept., Massey University; ³Tasman District Council, Richmond

Manaaki Whenua Landcare Research

MAKING A DIFFERENCE FOR A TRULY CLEAN, GREEN NEW ZEALAN

Background

- periodic cross section surveys are the main tool used by councils to allocate gravel extraction from rivers bed by considering
 - trends in mean bed level (MBL)
 - estimates of gravel extraction
 - estimates of long-term rate of gravel supply
- debate about trends in MBL, changes in gravel storage within the Motueka, and the influence of gravel extraction on those trends

Aims

- compile all river cross-section data for the Motueka River and provide a comprehensive analysis of all data using a consistent methodology ("end area method")
- calculate changes in mean bed levels and volume of gravel stored in the river channel through time
- compare gravel volume changes with gravel extraction rates, and determine the influence of gravel extraction on trends in riverbed levels
- consider alternatives to cross section analysis

Trends in gravel extraction

Upper Motueka

Lower Motueka

Manaaki Whenua

MAKING A DIFFERENCE FOR A TRULY CLEAN, GREEN NEW ZEALAND

Landcare Research

Bed level and gravel storage trends

- the river bed is degrading resulting in a loss of channel storage of gravel
 - Upper Motueka (1960-2004) –0.33 m
 - Lower Motueka (1978-2001) –0.34 m
- superficially much, but not all, the change in gravel storage can be accounted for by gravel extraction
- there are large error limits on the gravel storage volume changes derived from cross sections
- the cross sections probably underestimate the total gravel storage volume changes (and gravel transport)
 - don't account for spatial variation between the sections
 - don't account for temporal variation between surveys

Manaaki Whenua Landcare Research

Do the cross sections represent bed level dynamics? The cross section approach, March 2004 – May 2005

Elevation (m) March 2004 - May 2005 Distance (m)

Net loss 3500 m³

Do the cross sections represent bed level dynamics? The DEM approach, March 2004 – May 2005

naaki Whenua dcare Research

Conclusions

- there are large error limits on the gravel storage volume changes derived from cross sections
- there may be large error limits on estimates of gravel extraction derived from resource consent applications
 - since not all allocated gravel is extracted
 - returns from extractors may not be accurate
- to better understand how much river gravel extraction affects riverbed levels we need better
 - data on changes in bed levels (e.g., from RTK-GPS or LIDAR surveys),
 - information on gravel supply
 - information on the amount and location of gravel extraction.

