

Forest Hydrology Workshop

Tim Davie
Landcare Research, Lincoln

Land use change

Floods & Droughts (1997)

Figure 6.1. Conversion of dairy farmland to pine plantation, as shown here in Northland, is a common land-use change in New Zealand in the 1990s

Canterbury Plains 2006

Afforestation/deforestation 1952-2006

Afforestation/deforestation 1992-2006

Forest Hydrology

- Change has changed
 - Deforestation has replaced afforestation
- Fundamentally the same issues apply:
 - How much water comes from a forested catchment vs non-forested?
 - What is the timing of those flows?
 - Floods and low flows in particular
- New issues?
 - Nutrient cycling and losses in forested land
 - Active afforestation vs reversion

Forest Hydrology Processes

- How do trees affect hydrology?
- Transpiration
- Interception loss
- Interception gain?
- What does this mean for water yield?

Trees alter the water balance

Evaporation

- Evaporation is a diffusion process
 - Available energy
 - Ability of atmosphere to absorb water vapour
- Evaporation from a vegetated surface is a mixture of:
 - Evaporation from soil
 - Transpiration (dry leaf evaporation)
 - Interception (wet leaf evaporation)
- Originally thought that wet leaf took available energy, suppressing dry leaf
 - ∴ net evaporation loss the same

Trees and evaporation

- However water balance studies showed water loss with forests, e.g.
 - Wagon Wheel Gap, Colorado, (Bates, 1921)
 - Lancashire, UK, (Law, 1958)
- Rutter (1967) showed that wet leaf evaporation could be 4 times greater than dry leaf
 - Linked mechanism to transfer of sensible heat from higher in atmosphere
- Provided a mechanism to explain the water balance study results
 - Controversial theory at time

Transpiration

- Transpiration is water loss through the leaf (water extracted from ground by roots)
 - Annual transpiration similar trees & pasture
 - Pasture potentially higher
 - When soil wet pasture higher rates
 - Deeper roots can lead to longer period of transpiration under tall vegetation
 - Rooting depth is site specific

Transpiration & stomatal control

- Transpiration (dry leaf evaporation) can be controlled by plant physiology
 - Stomatal control
 - Exerted when the evaporative demand is high
 - N.B. not when soil moisture low
 - Drinking straw analogy

Hot dry atmosphere

Rigid sided stomata

Pasture species

High evaporative loss

Soft sided stomata

Some forest species
Tall tussock

Lower evaporative loss

Interception loss

Interception loss

- Water loss from water sitting on the leaf being evaporated
 - Horton (1919) early recognition of interception importance
 - Linked in to climate, tree form and rainfall type
- In New Zealand transpiration from pasture and forest are roughly equivalent
 - Therefore it is interception loss that causes greatest impact on water balance

Why are trees so good at intercepting water?

Lots of intercepting surfaces (leaves/needles)

Why are trees so good at intercepting water? Efficient turbulent transfer of water vapour

Why are trees so good at intercepting water?

Lots of intercepting surfaces (leaves/needles)

High potential storage of water in canopy

Rough canopy

Efficient turbulent transfer of water vapour

High evaporative losses

Amounts of interception loss

Canopy cover	Interception loss
Pine forest (Australia)	5-26% per event
Oak (Denmark)	15% of summer rainfall
Kanuka (NI East Coast)	42% of annual
Pine forest (Canty plains)	33% of annual
Snow tussock	10-45% of monthly
Snow tussock	22% of annual

NZ figures summarised from Rowe et al (2002)

Pinus radiata	22% of annual in NZ (35% max)
Douglas Fir	29% of annual
Kanuka	42% of annual
Manuka	31-39% of annual
Snow tussock	10-45% of monthly
Snow tussock	22% of annual
Beech forest	26% of annual
Podocarp-beech	39% of annual
Kamahi	27% of total

Rowe, L.K., Jackson, R. & Fahey, B. (2002) Hydrological Effects of Different Vegetative Covers. Landcare Research Report LC0203/027 (available at http://icm.landcareresearch.co.nz)

Summary NZ figures - annual

Canopy cover	Interception loss
Pinus radiata	22%
Douglas Fir	29%
Native forest	33%
Scrub (manuka/kanuka)	37%
Tussock grassland	21%

Caution with annual percentages
Climate an important factor

Rowe, L.K., Jackson, R. & Fahey, B. (2002) Hydrological Effects of Different Vegetative Covers. Landcare Research Report LC0203/027 (available at http://icm.landcareresearch.co.nz)

Interception loss (event)

3.2 (a) Interception ratio and storm precipitation in an area of tropical forest in Puerto Rico on data in Clegg, 1963).

Interception loss (annual)

(b) Annual mean interception ratio and annual precipitation for a of British sites (based on an original diagram in IH, 1982).

Interception gain

- Reverse process
 - Rough canopy leads to condensation on needles?
 - Fog interception
- Known in NW
 - Important whe precipitation
 - Not believed to

How does interception loss transmit into water balance?

- Storage change
 - Soil moisture storage

How does interception loss transmit into water balance?

- Storage change
 - Soil moisture storage
 - Doesn't always recover over winter

FIG. 6 — Relationship between 6-month moving average of rainfall (A) and 12-month moving mean of soil moisture depth (mm) in the top 2300 mm of soil from C5 (pasture) and C8 and 14 (pines)(B).

Water yield

 Interception loss and change in storage also transmit through into water yield reductions...

