Afforestation and water yield: the New Zealand experience

Tim Davie
Landcare Research,
Lincoln, New Zealand
Plantation forestry

- Mostly Pinus radiata
- 2002 – 1.8 million hectares (7% land area)
Afforestation catchment studies

1 - Moumoukai
2 – Purukohokohu
3 – Mangatu
4 – Moutere
5 – Ashley
6 – Kakahu
7 – Glendhu
8 – Berwick
Brief summary of results

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Land use change</th>
<th>Δ total water yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangatu</td>
<td>Pasture to pine forest</td>
<td>- 30%</td>
</tr>
<tr>
<td>Porukohukohu</td>
<td>Pasture to pine forest</td>
<td>- 30%</td>
</tr>
<tr>
<td>Berwick</td>
<td>Pasture to pine forest</td>
<td>- 45%</td>
</tr>
<tr>
<td>Moutere</td>
<td>Pasture to pine forest</td>
<td>- 80%</td>
</tr>
</tbody>
</table>
Brief summary of results

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Land use change</th>
<th>Δ total water yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangatu</td>
<td>Pasture to pine forest</td>
<td>- 30%</td>
</tr>
<tr>
<td>Porukohukohu</td>
<td>Pasture to pine forest</td>
<td>- 30%</td>
</tr>
<tr>
<td>Berwick</td>
<td>Pasture to pine forest</td>
<td>- 45%</td>
</tr>
<tr>
<td>Moutere</td>
<td>Pasture to pine forest</td>
<td>- 80%</td>
</tr>
<tr>
<td>Glendhu</td>
<td>Tussock to pine forest</td>
<td>- 30% **</td>
</tr>
<tr>
<td>Moumoukai</td>
<td>“Scrub” to pine forest</td>
<td>- 37%</td>
</tr>
<tr>
<td>Moutere</td>
<td>Gorse to pine forest</td>
<td>0 – 45%</td>
</tr>
</tbody>
</table>
Brief summary of results

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Land use change</th>
<th>Δ total water yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangatu</td>
<td>Pasture to pine forest</td>
<td>- 30%</td>
</tr>
<tr>
<td>Porukohukohu</td>
<td>Pasture to pine forest</td>
<td>- 30%</td>
</tr>
<tr>
<td>Berwick</td>
<td>Pasture to pine forest</td>
<td>- 38%</td>
</tr>
<tr>
<td>Moutere</td>
<td>Pasture to pine forest</td>
<td>- 80%</td>
</tr>
<tr>
<td>Glendhu</td>
<td>Tussock to pine forest</td>
<td>- 30% **</td>
</tr>
<tr>
<td>Moumoukai</td>
<td>“Scrub” to pine forest</td>
<td>- 37%</td>
</tr>
<tr>
<td>Moutere</td>
<td>Gorse to pine forest</td>
<td>0 – 45%</td>
</tr>
<tr>
<td>Tarawera</td>
<td>Large scale afforestation (28% of catchment)</td>
<td>- 13%</td>
</tr>
</tbody>
</table>
Annual water yield summary

• 30-80% reduction following afforestation from pasture
• 37% reduction following afforestation of scrub
• Similar for gorse
• Percentages can be deceptive
 – 10% of total rainfall may or may not be important
• Normally long term averages
 – Variation year to year
% change in annual water yield

Annual precipitation (mm)
Annual water yield summary

- 30-60% reduction following afforestation from pasture
- 37% reduction following afforestation of scrub
- Similar for gorse
- Percentages can be deceptive
 - 10% of total rainfall may or may not be important
- Normally long term averages
 - Variation year to year
 - Timing of average important
 - Ashley drops from 62% to 52% by including one more year’s data
Annual yield vs low flows

Annual yield cf MALF7day

% change

Purukohukohu	Berwick	Glendhu	Kakahu
Annual | MALF7day

0 | 50 | 40 | 30 | 20 | 10 | 0
Impact of forest cover on storm flow

Figure 15.9 Storm hydrographs from catchments in tussock grassland and in 10-year-old *P. radiata*, Glendhu, east Otago.
Stormflow hydrology

- Greatest effect is on small floods
 - Return period of a year or less
- Timing of when flood occurs is important
 - Main impact is through soil moisture deficit
Sediment yield

- Many studies highlighting forestry practices
 - Roading
 - Logging operations
- Recent study looking at long term sediment yield from pasture and forestry
 - More sediment from pasture
 - Steady drip vs pulse
Changing issues and stakeholders

- 1930s – 1985: large scale state ownership of forests
 - Catchment research answering management questions of the day
- Post 1985: private forestry companies
 - Increasing foreign ownership
 - Disinvestment in science for management
- In past 5 years starting to see removal of plantation forestry
 - Land use change: dairy conversion
 - Nutrient and water quality issues
- Reforestation for carbon sinks and biodiversity
 - Native forest regeneration on marginal land
Summary

• Long history of catchment research on afforestation-deforestation issues
 – Consistent signal of water yield reduction
 – Majority reduction in small floods
 – Complicated in low flow area

• Sediment yield reduced following afforestation
 – Management practices main issue
 – Single pulse compared to drip of sediment

• Changing forest industry has seen a change in science emphasis and change in stakeholder group