HYDROMETRIC DATA COLLECTION

APPROPRIATE TECHNOLOGY FOR THE PACIFIC ISLANDS

Presented to the
South Pacific HELP Meeting
Nelson, New Zealand
10-11 November 2005

Bob Curry, NIWA - Wellington
HYDROMETRIC DATA COLLECTION - APPROPRIATE TECHNOLOGY FOR THE PACIFIC ISLANDS

- Introduction
- Why do we need hydrometric data?
- How best can we collect the data?
 - Rainfall
 - River level
 - River flows
 - Water quality
 - Telemetry
- Maximising the benefits of the Talise HELP basin
HELP
Hydrology for Environment, Life & Policy
HYDROMETRIC DATA - APPROPRIATE TECHNOLOGY FOR THE PACIFIC ISLANDS

Why do we need hydrometric data?

Increasing political and public interest

- International / national
 - Climate change
 - Sea level changes
- Regional
 - Land use change: afforestation, deforestation, intensive farming, urbanisation
- Local
 - Water supplies, hydro power generation, irrigation, flooding, coastal erosion & ecosystems, sediment
Climate change - temperature

GLOBAL

Data from thermometers.
Clutha River at Balclutha 1947/48 to 1998/99 (data courtesy Contact Energy Ltd)

Annual mean flow (m^3/s)

Mean = 536 m^3/s

Mean = 612 m^3/s
Effects of logging
Effects of agriculture
Effects of mining
What hydrometric data do we need?

- **Rainfall**
 - minimum, means, maximums
 - depth-duration-intensity
- **River flow**
 - minimum, means, maximums, flow duration
- **Water quality**
 - to determine stream health (PAC-SHMAK)
 - presence of heavy metals (mining)
 - sediment (deforestation / mining)
How best can we collect the data?

Rainfall: rain-gauges
Rainfall measurements
Rainfall monitoring
Rainfall monitoring
Rainfall monitoring -
RAIN

drop diameter, intensity, duration

GAUGE:
Geometry, height, material, colour, orifice size, exposure

Tryography of the area around the gauge

Turbulence

Eddies

Splash in

WIND:
Direction, Speed

Site of the gauge

Errors in the gauge: Inclination, leaks, evaporation, splash out, condensation

Errors of measurement

Catch

Estimate of rainfall at a point

Estimation of rainfall at a point

Turbulence

Eddies

Splash in
Raingauge networks

- Used for calculating catchment mean rainfall for water balances
- Calculation by:
 - arithmetic mean
 - Theissen method - polygons
 - Isohyetal
 - Aspect-altitude method
Climate monitoring
Staff gauges
River level monitoring

Pressure transducers
Gas Purge Stations

Ultrasonic stations
Streamflow measurements
Stream-flow measurement
Stream-flow measurement
Streamflow measurement
Telemetry
Telemetry

GPRS - terrestrial

Globalstar - satellite
Satellite telemetry
Data processing, analyses and dissemination
Community Participation
Maximising the benefits of the Talise HELP basin

- Talise basin on Maewo Island, Vanuatu
- “Evolving” HELP basin status
- Local capacity in Vanuatu (DGMWR)
- Requires in-country in-kind contribution and field support
- Requires UNESCO, WMO & bilateral financial support
- Requires technical advice and support (SOPAC / NIWA)
- Sharing data and information openly
- Other countries use Talise data to extend their own catchment data and vice versa.
These guys enjoy their work!
Thank you for your attention